

orbit®

Gauge Software 4.0

Intuitive User Interface in OGS4.0

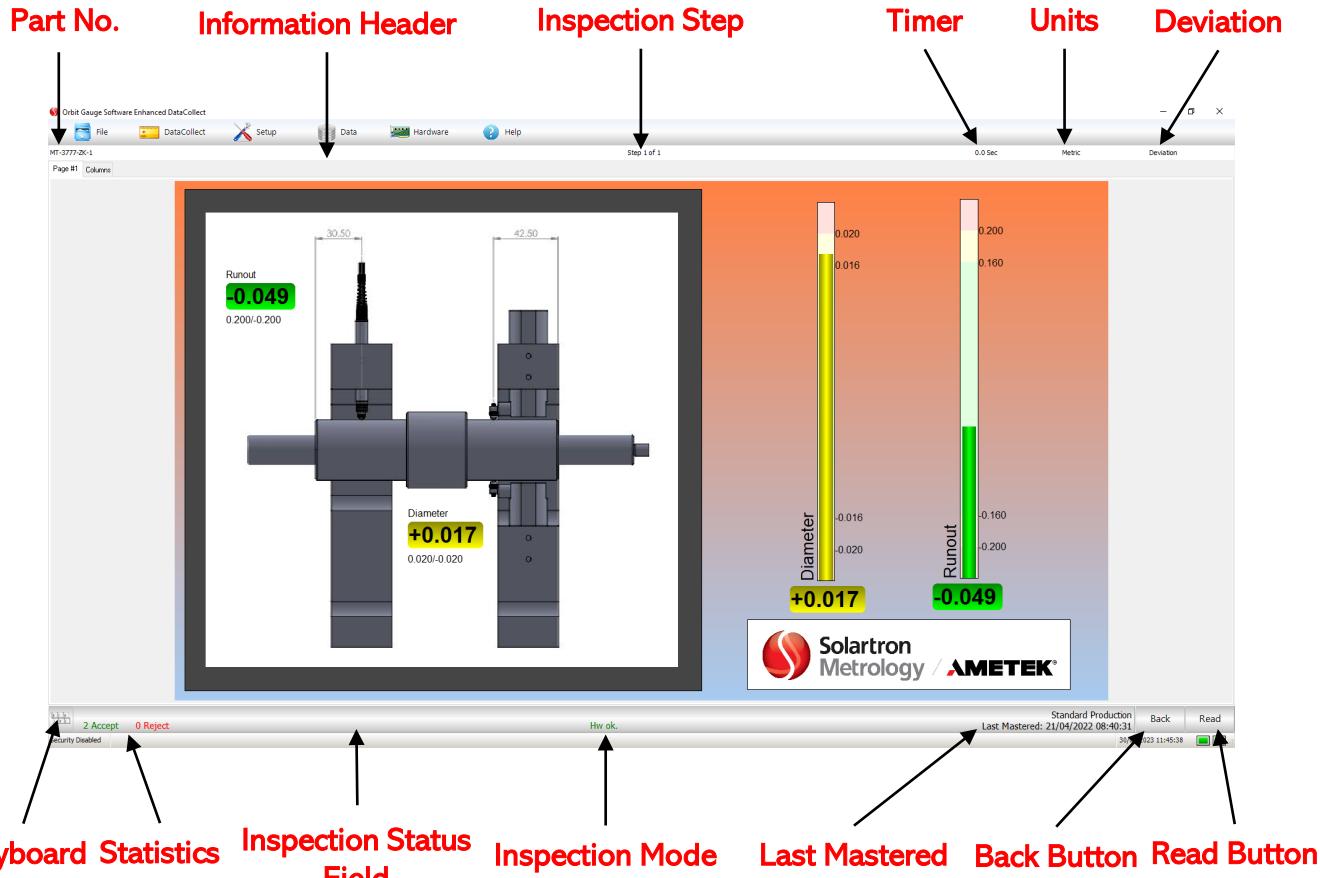
The screenshot displays the Orbit Gauge Software 4.0 interface across four windows:

- Top Left:** A measurement page showing a cylindrical part with multiple measurement points. Each point has a green "PASSED" status and a value of "+00.000".
- Top Right:** A "Properties" dialog box for a selected measurement point, showing parameters like "Calibration", "Measurement", "Tolerance", and "Value".
- Bottom Left:** A "Turbine blade profile demo" window showing a 3D model of a turbine blade with measurement points. One point is marked as "FAILED" (red X) and another as "PASSED" (green checkmark). The software interface includes a toolbar, a status bar, and a bottom navigation bar.
- Bottom Right:** A "Page Editor" window showing a detailed 3D model of a turbine blade profile with numerous measurement points. Each point is labeled with its name, tolerance, and value. A large green "PASSED" status is visible at the bottom left of the editor area.

Content includes:

- Inspecting/Mastering Pages in OGS4.0
- Recent History and Summary Pages
- Page Editor in OGS4.0
- Page Editor Script and Page Editor Library

// Verify measurements gauged and no input
msg := EvtInpFaults (EvtNo).
noS := EvtInpFaults (EvtNo).
begin


Result :=

```
_seqStatusStayInDuring:  
addLogItem(_logAlertOnly,_logChkNo)  
Sleep (5000); // allow menu to be read  
end;
```

Precision. Quality. Reliability

Inspection/Mastering Pages in OGS4.0

The Page Editor is used to create screens providing measurement results and inspections to users. The editor provides an easy interactive method for creating intuitive interfaces to inspection equipment.

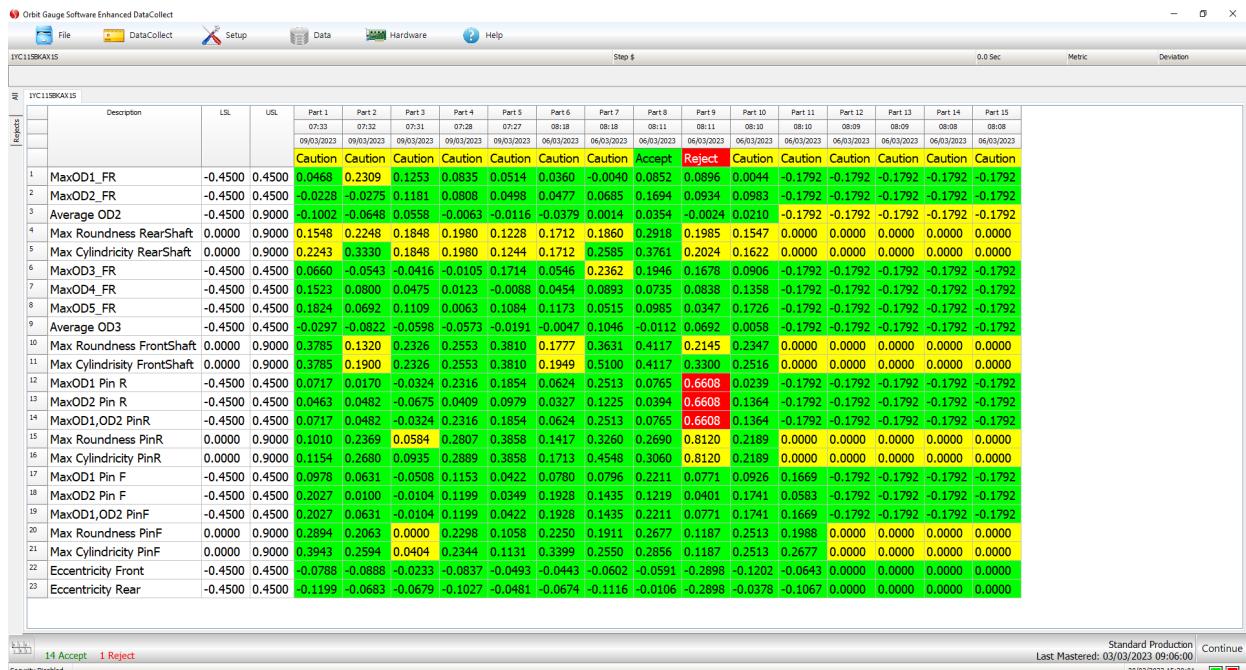
User Interface is one of the most complicated tasks when creating inspection sequences for any of gauge equipment. It must be simple, user friendly and intuitive so that the user understands its behavior and effect without the use of reason, experimentation, assistance or special training. Solartron Metrology's software design team considered to include some standard functionality which allows for controlling each part inspection, monitoring program status and traceability of the parts during/after inspection.

The **Part Number** is in the information header field. The **Serial Number**, if exists, can be added to the label. The label value will be displayed in the **Inspection Status** field of the **Summary Page** and stored in the database with the other collected during inspection data and can be exported at any time.

The **Inspection Step** allows for monitoring which sequence step is currently displayed. Note some applications require multiple steps and some steps can be skipped from the inspection sequence. Cycle timer, units and deviation status are displayed in the **Information Header**.

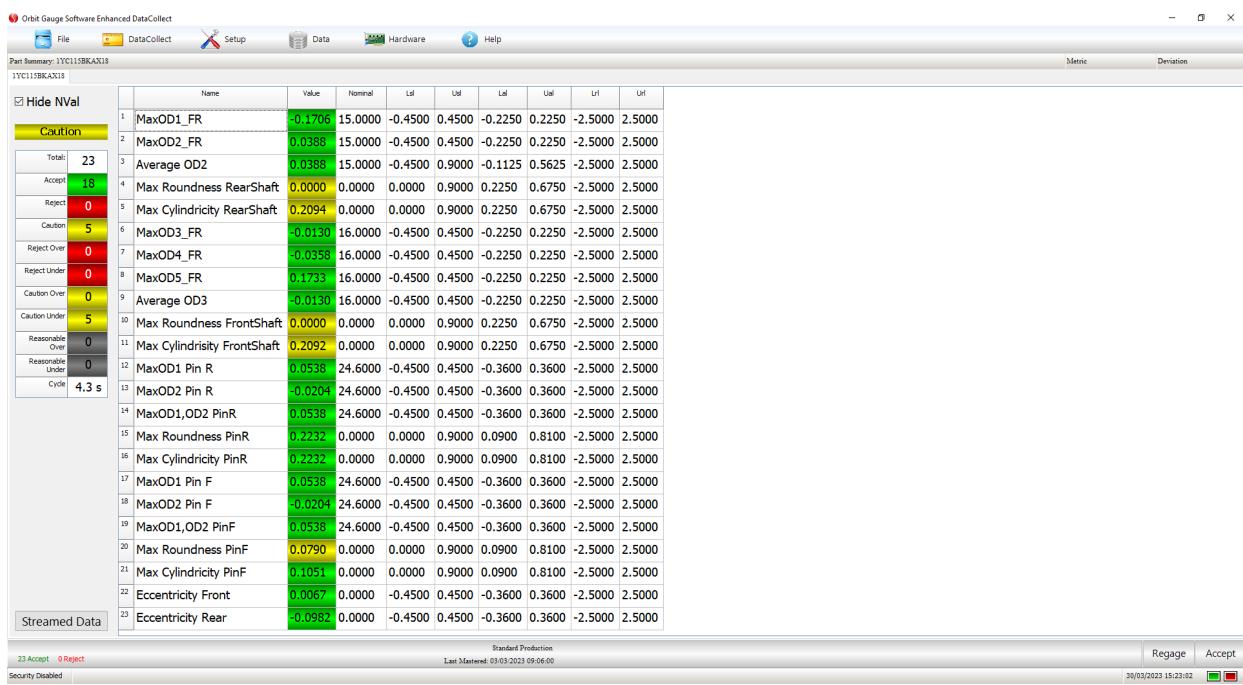
The **Internal Keyboard** can be accessed directly from the inspection page if touch screen display is used.

The **Statistics** displayed in **Inspection Status** field shows current number of accept and reject measurements.


Current Inspection Mode and when the part was **Last Mastered** can be observed on the same OGS4.0 field.

The **Back Button** which on the Click backups one inspection step.

The **Read Button** or **F10** which on the click will complete current inspection step and proceed on to the next step.


Recent History and Summary Pages in OGS4.0

The **Recent History** display shows recently inspected parts before inspecting a new part. The color coding of the screen makes it easy for an operator to recognise consecutive limit faults so action can be taken in a timely manner. The **Continue Button** will start part inspection. Also, **Recent History** page includes an area for display of script-controlled messages on automatic or semi-automatic systems.

	Description	LSL	USL	Part 1	Part 2	Part 3	Part 4	Part 5	Part 6	Part 7	Part 8	Part 9	Part 10	Part 11	Part 12	Part 13	Part 14	Part 15
09/03/2023	09/03/2023	09/03/2023	09/03/2023	07:33	07:32	07:31	07:28	07:27	08:18	08:11	08:11	08:10	08:10	08:09	08:09	08:08	08:08	
09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023	06/03/2023	06/03/2023	06/03/2023	06/03/2023	06/03/2023	06/03/2023	06/03/2023	06/03/2023	06/03/2023	
1	MaxOD1_FR	-0.4500	0.4500	0.0468	0.2309	0.1253	0.0835	0.0514	0.0360	-0.0040	0.0852	0.0896	0.0044	-0.1792	-0.1792	-0.1792	-0.1792	
2	MaxOD2_FR	-0.4500	0.4500	0.0228	-0.0275	0.1181	0.0808	0.0498	0.0477	0.0685	0.1694	0.0934	0.0983	-0.1792	-0.1792	-0.1792	-0.1792	
3	Average OD2	-0.4500	0.9000	0.1002	-0.0648	0.0558	-0.0063	-0.0116	-0.0379	0.0014	0.0354	-0.0024	0.0210	-0.1792	-0.1792	-0.1792	-0.1792	
4	Max Roundness RearShaft	0.0000	0.9000	0.1548	0.2248	0.1848	0.1980	0.1228	0.1712	0.1860	0.2918	0.1985	0.1547	0.0000	0.0000	0.0000	0.0000	
5	Max Cylindricity RearShaft	0.0000	0.9000	0.2243	0.3330	0.1848	0.1980	0.1244	0.1712	0.2585	0.3761	0.2024	0.1622	0.0000	0.0000	0.0000	0.0000	
6	MaxOD3_FR	-0.4500	0.4500	0.0660	-0.0543	-0.0416	-0.0105	0.1714	0.0546	0.2362	0.1946	0.1678	0.0906	-0.1792	-0.1792	-0.1792	-0.1792	
7	MaxOD4_FR	-0.4500	0.4500	0.1523	0.0800	0.0475	0.0123	-0.0088	0.0454	0.0893	0.0735	0.0838	0.1358	-0.1792	-0.1792	-0.1792	-0.1792	
8	MaxOD5_FR	-0.4500	0.4500	0.1824	0.0692	0.1109	0.0063	0.1084	0.1173	0.0515	0.0983	0.0347	0.1726	-0.1792	-0.1792	-0.1792	-0.1792	
9	Average OD3	-0.4500	0.4500	0.0297	-0.0822	-0.0598	-0.0573	-0.0191	-0.0047	0.1046	-0.0112	0.0692	0.0058	-0.1792	-0.1792	-0.1792	-0.1792	
10	Max Roundness FrontShaft	0.0000	0.9000	0.3785	0.1320	0.2326	0.2553	0.3010	0.1777	0.3631	0.4117	0.2145	0.2347	0.0000	0.0000	0.0000	0.0000	
11	Max Cylindricity FrontShaft	0.0000	0.9000	0.3785	0.1900	0.2326	0.2553	0.3810	0.1949	0.5100	0.4117	0.3300	0.2516	0.0000	0.0000	0.0000	0.0000	
12	MaxOD1 Pin R	-0.4500	0.4500	0.0717	0.0170	-0.0324	0.2316	0.1854	0.0624	0.2513	0.0765	0.6608	0.0239	-0.1792	-0.1792	-0.1792	-0.1792	
13	MaxOD2 Pin R	-0.4500	0.4500	0.0463	0.0462	-0.0675	0.0409	0.0979	0.0327	0.1225	0.0394	0.6608	0.1364	-0.1792	-0.1792	-0.1792	-0.1792	
14	MaxOD1,OD2 PinR	-0.4500	0.4500	0.0717	0.0462	-0.0324	0.2316	0.1854	0.0624	0.2513	0.0765	0.6608	0.1364	-0.1792	-0.1792	-0.1792	-0.1792	
15	Max Roundness PinR	0.0000	0.9000	0.1010	0.2369	0.0584	0.2807	0.3858	0.1417	0.3260	0.2699	0.8120	0.2189	0.0000	0.0000	0.0000	0.0000	
16	Max Cylindricity PinR	0.0000	0.9000	0.1154	0.2680	0.0935	0.2889	0.3858	0.1713	0.4548	0.3060	0.8120	0.2189	0.0000	0.0000	0.0000	0.0000	
17	MaxOD1 Pin F	-0.4500	0.4500	0.0974	0.0631	-0.0500	0.1153	0.0422	0.0780	0.0796	0.2211	0.0711	0.0928	0.1669	-0.1792	-0.1792	-0.1792	
18	MaxOD2 Pin F	-0.4500	0.4500	0.2027	0.0100	-0.0104	0.1999	0.0349	0.1928	0.1435	0.1219	0.0401	0.1741	0.0583	-0.1792	-0.1792	-0.1792	
19	MaxOD1,OD2 PinF	-0.4500	0.4500	0.2027	0.0631	-0.0104	0.1999	0.0422	0.1928	0.1435	0.2211	0.0771	0.1741	0.1669	-0.1792	-0.1792	-0.1792	
20	Max Roundness PinF	0.0000	0.9000	0.2894	0.2063	0.0000	0.2298	0.1058	0.1250	0.1911	0.2677	0.1187	0.2518	0.1988	0.0000	0.0000	0.0000	
21	Max Cylindricity PinF	0.0000	0.9000	0.3943	0.2594	0.0404	0.2344	0.1131	0.3399	0.2550	0.2858	0.1187	0.2518	0.2677	0.0000	0.0000	0.0000	
22	Eccentricity Front	-0.4500	0.4500	0.0788	-0.0888	-0.0233	-0.0307	-0.0443	-0.0443	-0.0602	0.0591	0.2898	-0.1202	-0.0643	0.0000	0.0000	0.0000	
23	Eccentricity Rear	-0.4500	0.4500	0.1199	-0.0683	-0.0679	-0.1027	-0.0481	-0.0674	-0.1116	0.0106	-0.2898	-0.0378	-0.1067	0.0000	0.0000	0.0000	

The **Part Summary** page shows overall part status and the number of measurements exceeding each limit type, measurement results for all inspection steps that were performed. This standard OGS4.0 page usually is the last page in the sequence cycle and has two buttons. One button is **Regage** which discards current measurement results and regauge part. Second button **Accept** will store part measurement results. If active, data export will take place at this time also.

	Name	Value	Nominal	Lsl	Usl	Lel	Uel	Lrl	Url	Url
1	MaxOD1_FR	-0.1706	15.0000	-0.4500	0.4500	-0.2250	0.2250	-2.5000	2.5000	
2	MaxOD2_FR	0.0388	15.0000	-0.4500	0.4500	-0.2250	0.2250	-2.5000	2.5000	
3	Average OD2	0.0388	15.0000	-0.4500	0.9000	-0.1215	0.5625	-2.5000	2.5000	
4	Max Roundness RearShaft	0.0000	0.0000	0.0000	0.9000	0.2250	0.6750	-2.5000	2.5000	
5	Max Cylindricity RearShaft	0.2094	0.0000	0.0000	0.9000	0.2250	0.6750	-2.5000	2.5000	
6	MaxOD3_FR	-0.0130	16.0000	-0.4500	0.4500	-0.2250	0.2250	-2.5000	2.5000	
7	MaxOD4_FR	-0.0358	16.0000	-0.4500	0.4500	-0.2250	0.2250	-2.5000	2.5000	
8	MaxOD5_FR	0.1733	16.0000	-0.4500	0.4500	-0.2250	0.2250	-2.5000	2.5000	
9	Average OD3	-0.0130	16.0000	-0.4500	0.4500	-0.2250	0.2250	-2.5000	2.5000	
10	Max Roundness FrontShaft	0.0000	0.0000	0.0000	0.9000	0.2250	0.6750	-2.5000	2.5000	
11	Max Cylindricity FrontShaft	0.2092	0.0000	0.0000	0.9000	0.2250	0.6750	-2.5000	2.5000	
12	MaxOD1 Pin R	0.0538	24.6000	-0.4500	0.4500	-0.3600	0.3600	-2.5000	2.5000	
13	MaxOD2 Pin R	-0.0204	24.6000	-0.4500	0.4500	-0.3600	0.3600	-2.5000	2.5000	
14	MaxOD1,OD2 PinR	0.0538	24.6000	-0.4500	0.4500	-0.3600	0.3600	-2.5000	2.5000	
15	Max Roundness PinR	0.2232	0.0000	0.0000	0.9000	0.0900	0.8100	-2.5000	2.5000	
16	Max Cylindricity PinR	0.2232	0.0000	0.0000	0.9000	0.0900	0.8100	-2.5000	2.5000	
17	MaxOD1 Pin F	0.0538	24.6000	-0.4500	0.4500	-0.3600	0.3600	-2.5000	2.5000	
18	MaxOD2 Pin F	-0.0204	24.6000	-0.4500	0.4500	-0.3600	0.3600	-2.5000	2.5000	
19	MaxOD1,OD2 PinF	0.0538	24.6000	-0.4500	0.4500	-0.3600	0.3600	-2.5000	2.5000	
20	Max Roundness PinF	0.0790	0.0000	0.0000	0.9000	0.0900	0.8100	-2.5000	2.5000	
21	Max Cylindricity PinF	0.1051	0.0000	0.0000	0.9000	0.0900	0.8100	-2.5000	2.5000	
22	Eccentricity Front	0.0067	0.0000	-0.4500	0.4500	-0.3600	0.3600	-2.5000	2.5000	
23	Eccentricity Rear	-0.0982	0.0000	-0.4500	0.4500	-0.3600	0.3600	-2.5000	2.5000	

Page Editor in OGS4.0

Orbit Gauge Software 4.0 Page Editor contains Page Editor Menu, Edit Toolbars, Page List, Draw Tools, Inspector and Colour Palette.

Page Editor Menu

1

Edit Toolbars

2

Inspector

3

Page List

4

Draw Tools

5

Colour Palette

Custom Page

6

7

1 The **Page Editor Menu** provides options to print or preview the current page, to cut, copy, paste, delete current selected items. Provides options to create a new page or delete the current page. Allows to change selected items display order, group or ungroup selected items etc.

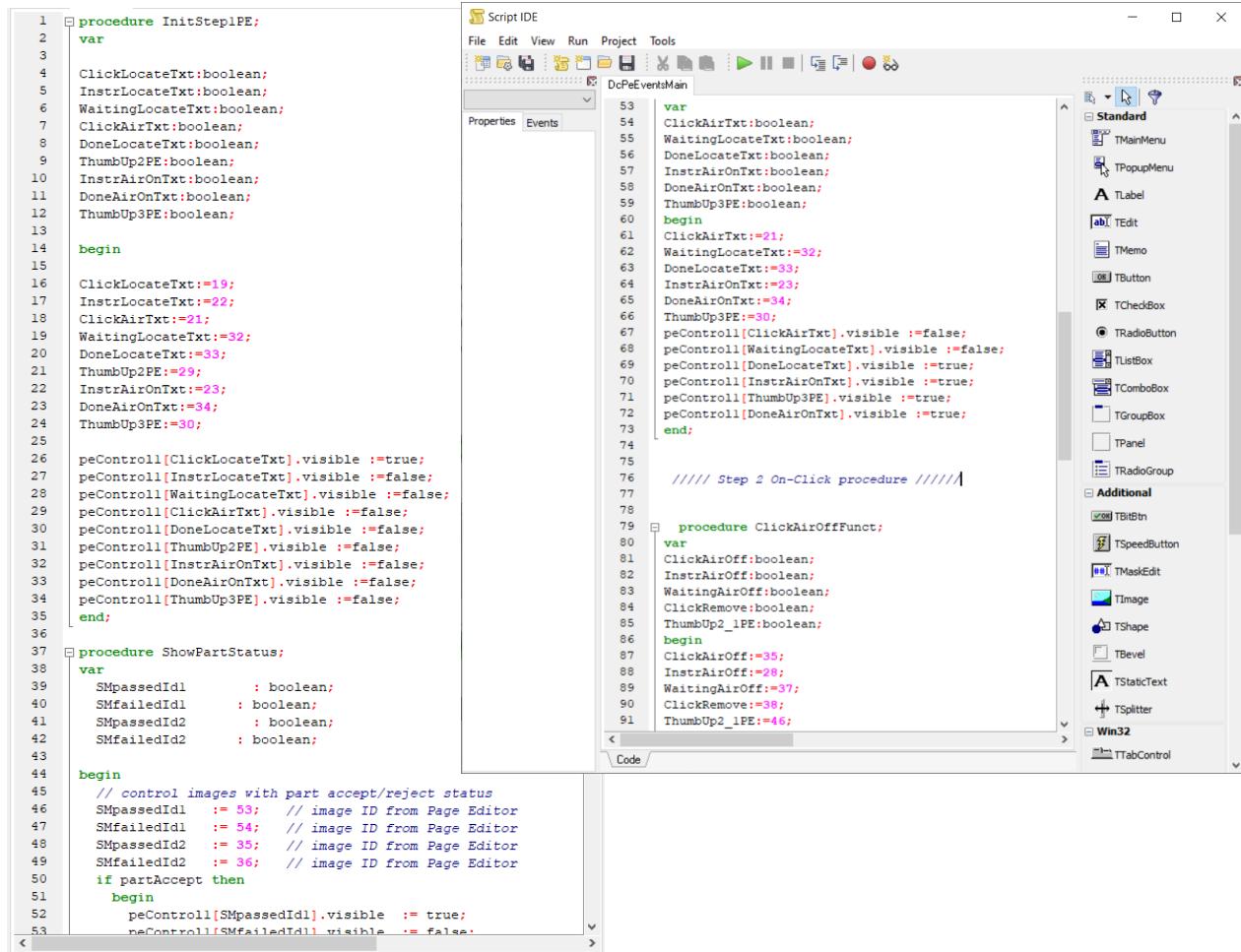
2 The **Edit Toolbars** is a panel to provide quick access to options for manipulating selected objects. It also provides the means to select which inspection step is currently being viewed.

3 The **Object Inspector** shows property values for the selected object. Each object has its own set of properties that define its appearance. Clicking an object will display its properties in the inspector so that they can be modified.

4 The **Page List** defined pages for the current step are shown in the page list. Each page can be selected for viewing by clicking its corresponding tab.

5 The **Draw Tools** toolbar provides access to supported page editor objects. Clicking a tool on the page objects can be placed on the screen by clicking desired location.

6 The **Color Palette** can be used to quickly fill boxes, circles, polygons and RTF backgrounds. Additional options for backgrounds can be set using the Brush property of the respective objects.


7 The **Custom Page** is an area to configure a custom interface. These pages will be displayed during the inspection sequence and contain process instructions, inspected part images, floats and scales, faults and fault clear instructions, input and output states, etc.

Page Editor Script and Page Editor Library

Scripting allows the base functionality of Data Collect to be extended to accommodate special setup needs. It is used to automate the inspection sequence and handle other special needs. Scripting can be added to the part inspection sequence and to the computer sequence.

The page script runs during part inspection and will be active while the part is being inspected. It is not active when the part selection screen is displayed or when Data Collect screens are displayed.

The page script is executed as part of the main DataCollect thread. This means that all user interaction, i.e. display of script-based forms or messages should be placed in the script.


```

1  procedure InitStep1PE;
2  var
3
4    ClickLocateTxt:boolean;
5    InstrLocateTxt:boolean;
6    WaitingLocateTxt:boolean;
7    ClickAirTxt:boolean;
8    DoneLocateTxt:boolean;
9    ThumbUp2PE:boolean;
10   InstrAirOnTxt:boolean;
11   DoneAirOnTxt:boolean;
12   ThumbUp3PE:boolean;
13
14 begin
15
16   ClickLocateTxt:=19;
17   InstrLocateTxt:=22;
18   ClickAirTxt:=21;
19   WaitingLocateTxt:=32;
20   DoneLocateTxt:=33;
21   ThumbUp2PE:=29;
22   InstrAirOnTxt:=23;
23   DoneAirOnTxt:=34;
24   ThumbUp3PE:=30;
25
26   peControl[ClickLocateTxt].visible :=true;
27   peControl[InstrLocateTxt].visible :=false;
28   peControl[WaitingLocateTxt].visible :=false;
29   peControl[ClickAirTxt].visible :=false;
30   peControl[DoneLocateTxt].visible :=false;
31   peControl[ThumbUp2PE].visible :=false;
32   peControl[InstrAirOnTxt].visible :=false;
33   peControl[DoneAirOnTxt].visible :=false;
34   peControl[ThumbUp3PE].visible :=false;
35 end;
36
37 procedure ShowPartStatus;
38 var
39   SMpassedId1      : boolean;
40   SMfailedId1      : boolean;
41   SMpassedId2      : boolean;
42   SMfailedId2      : boolean;
43
44 begin
45   // control images with part accept/reject status
46   SMpassedId1 := 53; // image ID from Page Editor
47   SMfailedId1 := 54; // image ID from Page Editor
48   SMpassedId2 := 35; // image ID from Page Editor
49   SMfailedId2 := 36; // image ID from Page Editor
50
51   if partAccept then
52     begin
53       peControl[SMpassedId1].visible := true;
54       peControl[SMfailedId1].visible := false.

```

The page script is global at the part level. That is, the same script executes the entire time the part is being inspected. The script is executed approximately every 500 ms and should always be designed to function with pass through functionality. That is, it should never enter a loop waiting for something to occur that may never occur. Since it executes in the main thread, endless loops in the script will cause the main thread, including the user interface to appear frozen.

The Page Editor library provides functions allowing scripts to interact with pages created with the Orbit Gauge Software 4.0 Page Editor. For example:

```

peControl1[25].text := 'Clear Error'; //sets control text to 'Clear Error'
peControl1[18].visible := false; //hides control on screen
glBool1[12].v:= peFlashState; //boolean 12 flashing at the same rate as a page item on the flash layer.

```


Worldwide Sales Offices

UK Head Office and Factory

Solartron Metrology
Steyning Way
Bognor Regis
West Sussex
UK, PO22 9ST
Tel: +44 (0) 1243 833333
Email: sales.solartronmetrology@ametek.com

France

Ametek SAS
Solartron Metrology Division
Rond point de l'épine des champs
Buroplus Bat D
Elancourt
78990
France
Tel: +33 (0) 1 30 68 89 50
Email: info.solartronmetrology@ametek.fr

Germany

Ametek GmbH
Solartron Metrology Division
Rudolf-Diesel-Strasse 16
40670 Meerbusch
Tel: +49 (0) 2159 9136 500
Email: vertrieb.solartron@ametek.com

China

Ametek Commercial Enterprise (Shanghai) Co., Ltd
Part A1, A4 2nd Floor
Building No 1, No 526 Fute
3rd Road East
Shanghai
Pilot Free Trade Zone
200131
China
Tel: +86 21 5763 2509
Email: china.solartronmetrology@ametek.com

USA

Solartron Metrology
915 N. New Hope Road, Suite C
Gastonia, NC 28054
Tel: +1 800 873 5838
Email: usasales.solartronmetrology@ametek.com

Japan

Ametek -Japan
Solartron Metrology Division
Tokyo Office
Shiba NBF Tower (1F, 3F)
1-1-30, Shiba Diamon Minato-Ku, Tokyo, Japan
(P.C.105-0012)
Tel: +81 03-4520-6654
Email: Mamoru.hasegawa@ametek.com

Solartron Metrology also carries an extensive network of sales agents in all major countries. For a local contact, go to www.solartronmetrology.com/contact or email at sales.solartronmetrology@ametek.com